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BACKGROUND: Although substantial concerns about the inflammatory effects of engineered nanomaterial (ENM) have been raised, experimentally
assessing toxicity of various ENMs is challenging and time-consuming. Alternatively, quantitative structure–activity relationship (QSAR) models
have been employed to assess nanosafety. However, no previous attempt has been made to predict the inflammatory potential of ENMs.
OBJECTIVES: By employing metal oxide nanoparticles (MeONPs) as a model ENM, we aimed to develop QSAR models for prediction of the inflam-
matory potential by their physicochemical properties.
METHODS: We built a comprehensive data set of 30 MeONPs to screen a proinflammatory cytokine interleukin (IL)-1 beta (IL-1b) release in THP-1 cell
line. The in vitro hazard ranking was validated in mouse lungs by oropharyngeal instillation of six randomly selected MeONPs. We established QSAR
models for prediction of MeONP-induced inflammatory potential via machine learning. The models were further validated against seven new MeONPs.
Density functional theory (DFT) computations were exploited to decipher the keymechanisms driving inflammatory responses ofMeONPs.
RESULTS: Seventeen out of 30 MeONPs induced excess IL-1b production in THP-1 cells. In vivo disease outcomes were highly relevant to the in vitro
data. QSAR models were developed for inflammatory potential, with predictive accuracy (ACC) exceeding 90%. The models were further validated
experimentally against seven independent MeONPs (ACC=86%). DFT computations and experimental results further revealed the underlying mech-
anisms: MeONPs with metal electronegativity lower than 1.55 and positive f-potential were more likely to cause lysosomal damage and
inflammation.
CONCLUSIONS: IL-1b released in THP-1 cells can be an index to rank the inflammatory potential ofMeONPs.QSARmodels based on IL-1bwere able to pre-
dict the inflammatory potential ofMeONPs.Our approach overcame the challenge of time- and labor-consuming biological experiments and allowed for com-
putational assessment ofMeONP inflammatory potential by characterization of their physicochemical properties. https://doi.org/10.1289/EHP6508

Introduction
With mounting investment in nanotechnology research and de-
velopment, the global nanotechnology market value is estimated
to exceed $121:8 billion USD by 2025 (Industry ARC 2019). The
nanotechnology industry is expected to generate more than 10%
of the gross domestic product by 2025 in several developed coun-
tries (Bursten et al. 2016). Due to their unique physicochemical
properties, engineered nanomaterials (ENMs) are used extensively
as catalysts, drug carriers, pigments, foods, cosmetic additives, and
more. However, some ENMs induce extremely hazardous effects in
mammals (Dreher 2004; Nel et al. 2009; Niels et al. 2019). The
unique properties of ENMswere found to dictate the nano–bio inter-
actions (Dreher 2004; Nel et al. 2009). Therefore, substantial nano-
safety concerns have been raised by governments and international
organizations. For instance, REACH (Registration, Evaluation,
Authorization andRestriction of Chemicals) requiresmanufacturers
to evaluate the safety of nanomaterials before a product enters the

European market (REACH 2006). The U.S. Food and Drug
Administration (U.S. FDA) has released nanotechnology safety
guidance and emphasized a thorough description of ENM physio-
chemical properties and biological effects (U.S. FDA 2014). A lim-
itless number of ENMs can be produced in various conformations
(Le and Winkler 2016). Considering the complexity of biosystems,
the number of ENMs interacting with biosystems may reach several
millions. Experimental assessments of nanosafety are extremely
time-, labor-, animal-, and cost-consuming (Nel et al. 2013; Liu et al.
2018). Therefore, in silico models and high-throughput assays are
attractive for ENMsafety evaluations and risk assessments.

Recent efforts sought to develop in silicomodels for predicting
ENM biological activities and for assisting biocompatible material
design (Fang et al. 2018; Oh et al. 2016; Puzyn et al. 2011; Wang
et al. 2017). For instance, Puzyn et al. (2011) developed a nano-
QSAR (Quantitative Structure-Activity Relationship) model to
describe the cytotoxicity of 16 different types of metal oxide nano-
particles (MeONPs) in Escherichia coli, using two quantum chem-
ical descriptors (enthalpy of formation of a gaseous cation and
energy of the lowest unoccupied molecular orbital). Oh et al.
(2016) established cellular toxicity models to predict the toxicity
of 17 quantum dots. The models demonstrated that toxicity is
closely correlated with surface properties and diameters of quan-
tum dots, assay types, and exposure times. However, most of the
published models were developed for a traditional toxicological
end point: cell death. Nanoparticles have exhibited subtle effects
beyond merely killing cells, such as interfering with immune cell
functions and communications (Wan-Seob et al. 2010; Zhu et al.
2012). Although the toxicities of nanoparticles in immune cells
have been underlined in recent nanobiology studies (Li et al.
2014a, 2014b, 2013), the interactions between ENMs and immune
systems (our primary defense systems against foreign invasion)
have rarely been predicted in silico.

Address correspondence to X. Li, Dalian University of Technology,
Linggong Rd. 2, Dalian 116024, PR China. Email: lixuehua@dlut.edu.cn or
R. Li, 99 Ren’ai Rd., 401 Building, Suzhou 215123, PR China. Email:
liruibin@suda.edu.cn
Supplemental Material is available online (https://doi.org/10.1289/EHP6508).
R.K. is an employee of Immuneering Corporation. All other authors declare

they have no actual or potential competing financial interest.
Received 7 November 2019; Revised 14 May 2020; Accepted 18 May

2020; Published 12 June 2020.
Note to readers with disabilities: EHP strives to ensure that all journal

content is accessible to all readers. However, some figures and Supplemental
Material published in EHP articles may not conform to 508 standards due to
the complexity of the information being presented. If you need assistance
accessing journal content, please contact ehponline@niehs.nih.gov. Our staff
will work with you to assess and meet your accessibility needs within 3
working days.

Environmental Health Perspectives 067010-1 128(6) June 2020

A Section 508–conformant HTML version of this article
is available at https://doi.org/10.1289/EHP6508.Research

https://doi.org/10.1289/EHP6508
mailto:lixuehua@dlut.edu.cn
mailto:liruibin@suda.edu.cn
https://doi.org/10.1289/EHP6508
http://ehp.niehs.nih.gov/accessibility/
mailto:ehponline@niehs.nih.gov
https://doi.org/10.1289/EHP6508


Due to their novel optical, magnetic, and electronic properties
(Taeho and Taeghwan 2014), MeONPs were employed in many
nanotechnology-based fields, including electronics (Li et al.
2015), catalysis (Zhao et al. 2015), and pharmaceuticals and med-
icines (Taeho and Taeghwan 2014), etc. The exploration and use
of MeONPs both caused exposure and risks (Li et al. 2014a). A
case study showed that high rare earth metal concentrations were
detected in lung biopsy specimens of a male subject with severe
pulmonary fibrosis after many years of exposure to fumes and
dusts containing rare earth elements (Vocaturo et al. 1983). Some
MeONPs were found to induce strong immune responses via
inflammasome and Toll-like receptor activation in vitro (Li et al.
2014a) and in vivo (Wan-Seob et al. 2010), as evidenced by the
substantial release of the proinflammatory cytokine interleukin-1
beta (IL-1b). From the perspective of nanosafety assessments,
models for predicting the inflammatory potential of MeONPs are
in demand for advancing the toxicity assessments of MeONPs.

QSAR models were proposed herein to predict the inflamma-
tory potential of MeONPs. Figure 1 shows the workflow of this
project, including four steps: construction of a MeONP library,
development of predictive models, mechanism interpretation, and
experimental validation. The objectives of this study were a) to
construct a library of 30 MeONPs for characterization of their
physicochemical properties as well as screening of IL-b produc-
tion in THP-1 cells; b) to develop interpretable QSAR models for
prediction of inflammatory potential; c) to validate the models’
predictions using independent MeONPs; and d) to identify the
mechanisms of MeONP-induced inflammation.

Methods

Materials
MeONPs were in-house synthetized, donated, or purchased from
commercial sources as outlined in Table S1; the in-house synthesis
of TiO2 (George et al. 2011) and ZnO (Tani et al. 2002) was con-
ducted by a flame spray pyrolysis reactor as previously described;
deionized (DI) water was obtained from a Milli-Q® water purifica-
tion system (Millipore); THP-1 cells were purchased from ATCC;
Corning® RPMI 1640 (CAT 10-041-CV) were purchased from
Corning Inc.; 10% fetal bovine serum (CAT 100-500) was pur-
chased from GeminiBio. Phorbol 12-myristate acetate (PMA) and
lipopolysaccharide (LPS) were purchased from Sigma-Aldrich.
MTS kit was purchased from Promega. Magic RedTM cathepsin B
assay kit was purchased from Immunochemistry Technologies;
IL-1b, IL-6, TNF-a, and MCP-1 ELISA kits were purchased from
BDBiosciences.

Characterization of the MeONPs
The MeONPs were subjected to physicochemical analyses for
examinations of primary particle sizes, hydrodynamic sizes, dis-
solution rates, and f-potentials in deionized water ðDIH2OÞ. The
primary sizes of MeONPs were measured by a transmission elec-
tron microscopy (TEM). TEM samples were prepared by sus-
pending 50 lg=mL of MeONPs in DIH2O. A drop of MeONP
suspension was placed on 200-mesh, carbon-coated formvar sup-
port films mounted on copper grids (Ted Pella, Inc.), and was left
to air dry at room temperature (RT). Grids were examined on a
JEOL 1200 EX TEM with accelerating voltage at 80 kV. We ran-
domly counted 100 particles for each MeONPs to calculate the
average sizes by TEM images. In addition, the MeONP aqueous
suspensions (1 mL) at 50 lg=mL were added into cuvettes to
measure average values of hydrodynamic sizes and f-potentials
after 10 repeated tests using a Nano-ZS90 analyzer (Brookhaven
Instruments Corp.). Dissolution capabilities of MeONPs were
examined in phagolysosomal simulated fluid (PSF; pH 4.5),
which was prepared by a previously described recipe (Li et al.
2014a). MeONPs were dispersed in PSF at 50 lg=mL by probe
sonication (Sonics & Materials, Inc.) at 32 W for 10 s. After 24 h
incubation at RT, the supernatants of MeONP suspensions were
collected by centrifugation at 15,000× g for 30 min. The concen-
trations of metal ions in supernatants were measured using an
inductively coupled plasma-atomic emission spectrometry (ICP-
OES, ICPE-9000, Shimadzu Corp.). The percentages of MeONP
dissolution were calculated using the following equation:

Dissolution=
C×V
50×R

×100%, (1)

where C (lg=mL) is the concentration of metal ions in superna-
tants, V (mL) is the volume of supernatants; R is the mass ratio of
metal elements in each MeONPs.

Cell Culture
THP-1 cells were cultured in Corning® RPMI 1640 media supple-
mented with 10% fetal bovine serum, namely complete RPMI
1640 (c-RPMI 1640) medium at 5% CO2 and 37°C. Before expo-
sure to MeONPs, THP-1 cells were primed by suspension in
c-RPMI 1640 medium containing 1 lg=mL PMA and seeded in
96-well plates or 8-well chambers (Corning Inc.) at a density of
3 × 105 cells=mL for overnight incubation.

Preparation of MeONP Suspensions for Cell Exposure
MeONPs were added in a c-RPMI 1640 medium supplemented
with 10 ng=mL LPS at a concentration of 200 lg=mL. Then the
mixture was dispersed by probe sonication at 32 W for 10 s. The
MeONP suspensions were diluted to the desired concentrations
(3.1, 6.2, 12.5, 25, 50, and 100 lg=mL) for cell experiments.

Examination of Cell Viability and Cytokine Production
The supernatants of primed THP-1 cells seeded in 96-well plates
(100 lL=well, 3 × 105 cells=mL) were aspirated and replaced by
120 lL serial MeONPs dilutions (0, 3.1, 6.2, 13, 25, 50, 100, and
200 lg=mL). Three replicates were performed at each concentra-
tion. After 24 h incubation, while the supernatants (100 lL=well)
were collected for measurement of cytokine (IL-1b, TNF-a, and
IL-6) production by ELISA according to the manufacturers’ pro-
tocols, the residual supernatants were aspirated and replaced by
MTS working solution (120 lL=well). After 3 h incubation,
aliquots of 100 lL MTS solutions were transferred into new
96-well plates to record the absorbance of MTS solutions on an
SpectraMax M5 microplate reader (Molecular Devices, LLC) at
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Figure 1. Schematic workflow of metal oxide nanomaterials (MeONPs)
library construction, predictive modeling, mechanism interpretation, and ex-
perimental validation.
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490 nm. Cell viabilities were calculated using the following
equation:

Viability=
ANPS −ABL

ACTR −ABL
×100%, (2)

where ANPS, ACTR, and ABL represent the absorbance of MTS sol-
utions acquired from MeONP-treated cells, control cells, and
blanks, respectively.

Confocal Imaging of Cathepsin B Release
Primed THP-1 cells were seeded in an 8-well chamber
(300 lL=well, 3 × 105 cells=mL) for overnight incubation. Then,
the supernatants were replaced by 300 lL MeONP suspensions
(25 lg=mL) for 12 h. The supernatants were aspirated and
washed thrice by PBS. The cells in each chamber were stained in
100 lL c-RPMI 1640 media containing 260× diluted Magic
RedTM cathepsin B assay kit and 1 lg=mL Hoechst 33342 for
1 h. After thrice washing by PBS, the cell images were captured
by a confocal laser scanning microscope (FV 1200, Olympus
Corp.) with a 60× oil immersion objective lens at excitation
wavelengths of 405 and 592 nm.

Calculation of FCIL-1b

Fold changes of IL-1b production (FCIL-1b) were used to express
the levels of MeONP-induced IL-1b in THP-1 cells. It was calcu-
lated using the following equation:

FCIL-1b =
avg Sampleð Þ
avg Controlð Þ (3)

where avg(Sample) is the average level (pg/mL) of IL-1b
induced by a specific MeONP at each dose; avg(Control) is the
average level (pg/mL) of IL-1b in untreated THP-1 cells. A nano-
particle was classified to the group of MeONPs with inflamma-
tory potential (ip-MeONPs) if its log2 (FCIL-1b) ≥1; otherwise,
the MeONP was classified to the group of MeONPs with nonin-
flammatory potential (nip-MeONPs).

Animal Experiments
C57Bl/6 female mice at 8 wk were purchased from Nanjing Peng
Sheng Biological Technology (Nanjing) and were housed under
standard laboratory conditions (25°C; 60% relative humidity;
12 h light, 12 h dark cycle) and hygiene status (autoclaved food
and acidified water) according to Soochow University guidelines
for the care and treatment of laboratory animals. Our animal
treatment protocols were approved as following Soochow
University Laboratory Animal Center protocols. Animals were
exposed to MeONPs by an oropharyngeal instillation method.
Briefly, MeONPs were suspended in PBS at 1 mg=mL by a probe
sonication (32 W) for 10 s. The animals were anesthetized by in-
traperitoneal injection of sodium pentobarbital (200 mg=kg) in a
total volume of 100 lL. The anesthetized animals were held in a
vertical position to allow the instillation of MeONP suspension
(2 mg=kg) at the back of the tongue for pulmonary aspiration.

Vehicle and positive controls were included by exposure of
animals to 50 lL of PBS and 5 mg=kg crystalline silica (Min-U-
Sil®), respectively. Each group included six mice. After 40-h ex-
posure, the mice were fully anesthetized by overdose of sodium
pentobarbital (400 mg=kg) and sacrificed by bilateral thoracot-
omy to collect bronchoalveolar lavage fluid (BALF) following a
reported protocol (Sun et al. 2017). After that, the left lung was
collected and stored in liquid nitrogen for future analyses. The
right lung was expanded by injection of 0:5 mL 10% formalin in

PBS at a constant pressure and removed into a 2 mL Eppendorf
tube containing 1 mL 10% formalin. After 24-h fixation at RT,
lung tissues were transferred into 70% ethanol for further fixation
(2 d). The fixed tissues were cut into 5-µm-thick paraffin sections
for hematoxylin and eosin (H&E) staining according to a stand-
ard protocol (Cardiff et al. 2014). Three sections were prepared
for each animal. Aliquots of 50 lm BALF from each animal
were added in 96-well half area plates precoated by the capture
antibodies in MCP-1 and IL-1b ELISA kits. Quantification of
IL-1b and MCP-1 in BALF was conducted according to the
manufacturers’ instructions of each ELISA kit. The level of
MeONP-induced IL-1b and MCP-1 production was expressed
as FCIL-1b=MCP-1 (fold change of IL-1b=MCP-1 production) and
calculated using Equation 3.

Descriptor Generation
There were three types of descriptors resulting from quantum-
mechanical computations, experimental characterization, and the
periodic table. In detail, the quantum-mechanical descriptors
were selected if they met one of the following two criteria: a)
they directly reflected toxicology-relevant properties, such as
cluster size, shape, redox potential, and band structure; b) they
were derived from optimized geometric structures that can reflect
structural, electronic, and energetic properties of crystals. The
crystalline files in common intermediate format (CIF) were
obtained using FindIt software (FindIt 2009) and then trans-
formed by Open Babel 2.4.1 (O’Boyle et al. 2011) into standard
input files (POSCAR files). Molecular geometries of each cluster
reflecting all characteristics of MeONP crystal structures were
optimized by the general gradient approximate (GGA) of
the Vienna Ab initio Simulation Package (VASP 5.4.1).
Furthermore, 43 VASP descriptors were obtained via crystalline
structure optimization, and 16 quantum-mechanical descriptors
were obtained using the PM7 method implemented in the
MOPAC 2016 software package (Stewart 2016). Four experi-
mental descriptors (primary size, hydrodynamic diameter,
f-potential in water, dissolution in PSF solution) were determined
in our laboratory. Five periodic table–based descriptors (electro-
negativity of metal atoms and metal oxides, cations charge, peri-
odic number of elements, and the atomic ratio of metal and
oxygen atoms) were derived from the publicly available periodic
table (https://www.webelements.com).

Model Development
Classification models were built using the C4.5 decision tree,
support vector machine (SVM), and logistic regression. A C4.5
decision tree (Quinlan 1986) is generated from a set of training
data, and each inner node contains a test on the original attributes.
Prediction was accomplished by traversing a tree from the root to
a leaf that directly classified a nanoparticle to the ip-MeONP
group or nip-MeONP group. The logistic regression algorithm
can predict dichotomous dependent variables by estimating the
probability of the event’s occurrence (Hastie et al. 2001). The
SVM algorithm is based on the statistical learning theory and
the Vapnik-Chervonenkis dimension (Brereton and Lloyd 2010).
A polynomial kernel was used to develop the SVM model. We
exploited a 10-fold cross-validation procedure based on a grid
search to determine the best parameters in three machine learning
methods. In our case, log2(FCIL-1b) was adopted as the dependent
variable. MeONPs were judged as ip-MeONPs if log2(FCIL-1b)
≥1. Otherwise, the particles were classified to nip-MeONPs. For
validation purposes, the data set was randomly split into training
(176 data points generated from 22 MeONPs tested at eight serial
dilutions) and test (64 data points generated from eight MeONPs
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tested at eight serial dilutions) data sets. The data points from
eight serial dilutions of one specific MeONP were either fully di-
vided into the training set or test set. All procedures were per-
formed using the Weka software (version 3.8.2.0).

Partial least square (PLS) regression (Wold 1982) was used to
develop the continuous model for FCIL-1b in THP-1 cells. The
SIMCA 13.0 software package (Bylesjö et al. 2006) was used to
conduct the PLS and subsequent analyses. The descriptors of the
model were selected based on variable influence on projection
values (VIP) (Roy P and Roy K 2008). Briefly, descriptors with
the lowest VIP values were deleted from the model until the
model showed the best performance in cross-validation.

Model Performance Evaluation
The performance of classification models were evaluated by four
metrics: sensitivity (SE=TP=½TP+FN�), specificity (SP=TN=
½TN+FP�), overall predictive accuracy (ACC= ½TP+TN�=
½TP+FP+TN+FN�), and Matthews correlation coefficient
(MCC):

MCC=
TP×TN− FP×FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP+FPÞðTP+FNÞðTN+FPÞðTN+FNÞp !

,

(4)

where TN, TP, FN, and FP represent true negatives, true posi-
tives, false negatives, and false positives. MCC (Matthews 1975)
is a binary classification rate that generates a high score only if
the binary predictor was able to correctly predict the majority of
positive data instances and the majority of negative data instan-
ces. It ranges in the interval of −1 to +1. The extreme values at
+1 and –1 represent perfect classification and perfect misclassifi-
cation, respectively, whereas MCC=0 is the expected value for a
coin-tossing classifier. In addition, the receiver operating charac-
teristic (ROC) (Osei-Bryson 2004) was used in model evaluation.
The ROC curves are constructed by plotting the true positive rate
vs. the false positive rate at various threshold settings. A larger
area under curve (AUC) indicates higher model predictivity. The
learning procedure on the training set was executed in 10-fold
cross-validation.

The fitting performance of the continuous model was meas-
ured by the squared correlation coefficient (R2) between the pre-
dicted and observed FCIL-1b. The performances of internal cross-
validation and external validation were assessed by the root mean
square error (RMSE) and the predictive squared correlation coef-
ficient (Q2). RMSE and Q2 were calculated using Equations 5
and 6, respectively.

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i=1 ðyi −byiÞ2

n

s
(5)

Q2 = 1−

Ptest
i=1

ðyi −byiÞ2Ptest
i=1

ðyi −�yiÞ2
(6)

where yi and byi are the measured and predicted FCIL-1b values,
respectively; �yi is the average value of FCIL-1b for the training
set; test indicates number of predictions. Q2 is a value between
–1 and 1. The larger the Q2 is, the better the performance of the
model. To estimate the possibility of chance correlation and the
predictive capability of the continuous model, we performed a
permutation test by scrambling the dependent variable values of

samples. We built 500 models based on permutations using the
same set of descriptors and algorithm.

Applicability Domain
The applicability domain of the classificationmodel was character-
ized by a descriptor standardization approach (Roy K et al. 2015).
Briefly, the descriptor values in the training set were normalized. If
all of the normalized descriptors for aMeONP are larger than three,
theMeONP is an outlier; otherwise, it is nonoutlier.

For the continuous model, a Williams plot of standardized
residuals vs. leverage values (hi) was drawn to investigate applic-
ability domain. hi is a metric for measuring the distance of a
given value from the mean of all values and was used for identifi-
cation of outliers in a data set and calculated using the following
formula (Jaworska et al. 2005):

hi = xTi XTXð Þxi, (7)

where X means the descriptor matrix of a data set; superscript T
is transpose of a matrix or a vector; and xi is the descriptor vector
of ith MeONP. The prediction value of the ith MeONP is consid-
ered highly reliable if its hi is lower than the warning leverage
(h�) calculated by Equation 8.

h� =3ðp+1Þ=n: (8)

Here, n is the number of MeONPs, and p is the number of
descriptors used by the model.

Computation for Adsorption Energies
Density functional theory (DFT) computations were performed to
investigate the adsorption of protons onto MeONPs. The adsorp-
tion energy (Ead) was calculated by Equation 9.

Ead = TEM−H+ −TEM −TEH+, (9)

where TE represents the total energy consisting of the kinetic
energy, static potential energy, Coulomb energy, exchange ener-
gies, and correlation energies. The subscript M−H+ stands for
the metal oxide (M) and proton (H+) complex system. Because
the total energy is calculated based on the energy of electrons in
quantum chemical calculations, the total energy of a single H+

(without electrons) is neglected in this case. For clarity, we used
the absolute values of the adsorption energy (jEadj) for discus-
sion. According to our definition, larger jEadj value means stron-
ger interactions between the proton and metal oxides.

DFT computations were performed using a DMol program
(Yang and Xing 2010). The exchange–correlation term was pre-
viously described by the Perdew-Burke-Ernzerhof generalized
gradient approximation (GGA-PBE) (Perdew et al. 1996). The
double numerical basis with polarization functions (DNP) (Inada
and Orita 2008) was adopted. This basis is comparable to Pople’s
6-31G** basis set (Liu and Rodriguez 2005). The PBE+D2
method with the Grimme van der Waals (vdW) correction
(Grimme 2006) was exploited to accurately describe the long-
range electrostatic interactions. A 6× 1× 6 k-point sampling was
used for MeONPs, and a Methfessel-Paxton smearing of 0.01 Ha
was applied for the Brillouin-zone integration.

Statistical Analysis
All the cell samples were randomly allocated into experimental
groups by drawing lots. All the experiments were repeated at
least thrice with three to six replicates. Results were expressed as
mean± standard deviation of multiple determinations from at
least three repeated tests. Results were statistically analyzed using
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one-way ANOVA or Student t-test. The difference was regarded
as statistically significant with p≤ 0:05 in analysis. Correlation
was considered to be statistically significant if the R2 was ≥0:7,
and the significance (p) of F test was ≤0:05.

Results

Construction of MeONP Library to Assess Inflammatory
Potential
Characterization of MeONPs. We acquired 30 MeONPs to char-
acterize their primary sizes, dissolution percentages, f-potential,
and hydrodynamic sizes (Table S2). Most nanoparticles showed
spherical morphologies with primary sizes ranging from 10 to
71 nm, except for Cr2O3, Ni2O3, Nd2O3, Sm2O3, and Er2O3,
which ranged from 108 to 193 nm. In aqueous media, most
MeONPs formed aggregates with hydrodynamic diameters of
202–862 nm except for WO3 (111 nm). NiO, Cr2O3, In2O3, and
Fe2O3 exhibited near neutral f-potential at −5:6 to 5:4mV in DI
H2O. Although Fe3O4, WO3, Hf2O3, Sb2O3, Sn2O3, ZnO, Zr2O3,
b-MnO2, and Mn2O3 showed negative f-potentials at −35:8 to
−14:3mV, the other 17 MeONPs had a positive surface charge
with f-potentials at 13.5 to 47:3mV. Dissolution capabilities of
MeONPs were examined in PSF (pH 4.5). Cr2O3, NiO, and ZnO
quickly dissolved in PSF with >90%metal ion release, and Ni2O3,
CoO, Mn2O3, CeO2, Sb2O3, and WO3 showed moderate dissolu-
tion effects. The other 21MeONPs were almost insoluble, display-
ing <10%metal ion release.

In vitro toxicity caused by MeONPs. THP-1 cells were
exposed to a serial dilution ofMeONPs (0, 3.1, 6.2, 13, 25, 50, 100,
and 200 lg=mL) for 24 h to assess cytotoxicity, including cell via-
bility and inflammatory responses. Cell viability was examined by
colorimetric detection of metabolic activity via MTS assay.
Although a majority of MeONPs had no effect on the viability of
THP-1 cells, CoO, CuO, ZnO, Co3O4, Cr2O3, MnO2, Mn2O3, and
Ni2O3 induced considerable cytotoxic effect evidenced by the
MTS results (Figure S1; Table S3). Proinflammatory cytokine
IL-1bwas examined in the supernatants of THP-1 cells exposed to
MeONPs by ELISA. Thenwe used Equation 3 to convert the IL-1b
values into fold changes (FCIL-1b) in comparison with the basal
level of IL-1b in control. Notably, 17 of 30 MeONPs induced sig-
nificantly higher IL-1b production than the controls in a dose-
dependentmanner over an extensive concentration range (Figure 2).
Among the 17 ip-MeONPs, nine rare earth oxides (Sm2O3, Eu2O3,
La2O3, Yb2O3, Gd2O3, Dy2O3, Y2O3, Nd2O3, and Er2O3) ranked
in the top class and displayed FCIL-1b >24 at 200 lg=mL exposure
dose; two manganese oxides (Mn2O3 and MnO2) also elicited sub-
stantial cytokine release (24>FCIL-1b >10); six transition metal
oxides (Fe3O4, In2O3, Al2O3, Fe2O3, ZrO2, and HfO2) induced rel-
atively low IL-1b (Table S4).

We examined the impacts of MeONPs on the release of two
additional cytokines (TNF-a and IL-6) in THP-1 cells. First, the
MTS result and IL-1b release were exploited to assess the impacts
of all 30 MeONPs on cell proliferation and proinflammatory
effects, respectively. As a result, the MeONPs were divided into
three groups, including the proinflammatory, cytotoxic, and nonin-
flammatory/noncytotoxic (Table S5). Notably, the MeONPs in
three groups were mutually exclusive. We randomly selected two
materials from each group.As a result, sixMeONPswere acquired:
La2O3, Gd2O3, Co3O4, ZnO, WO3, and TiO2. As shown in Figure
S2A, La2O3, Gd2O3 induced dose-dependent TNF-a production,
and Co3O4 at high exposure doses induced slight increments of
TNF-a, whereas ZnO,WO3, and TiO2 failed to elicit this cytokine.
This trend is broadly consistent with their IL-1b levels, further sup-
porting the inflammatory rankings of MeONPs determined by
IL-1b production. However, all six nanoparticles failed to elicit
IL-6 release in THP-1 cells (Figure S2B).

In vivo validation of the pulmonary inflammatory potential
of MeONPs. To test the validity of the in vitro hazard ranking to
toxicity outcomes in animals, C57Bl/6 mice were exposed to the six
selected MeONPs by oropharyngeal instillation for 40 h. Animals
receiving La2O3 and Gd2O3 exposure showed significant increases
of IL-1b and MCP-1 in BALF, whereas Co3O4, ZnO, TiO2, and
WO3 showed levels of cytokine release similar to those of vehicle
control (Figure 3A). The cytokine release profile of all sixMeONPs
was consistent with the fold changes of IL-1b production in THP-1
cells. In addition, we examined the inflammation in lung sections by
H&E staining as inflammatory cytokines often contribute to
immune cell recruitment. As expected, La2O3 and Gd2O3 elicited
increases in focal areas of inflammation around small airways in
lung sections, whereas ZnO, TiO2, and WO3 did not elicit discern-
able cell recruitment (Figure 3B). These images further supported
the inflammatory rankings of MeONPs in THP-1 cells. However,
Co3O4-treated lungs showed only a little inflammation, which is
inconsistentwith its effect on IL-1b release in vitro.

Classification Models for Inflammatory Potential
Todetermine the optimalmodel for predicting inflammatory potential,
we tried three different methods: logistic regression, SVM, and C4.5
decision tree. The optimized parameters of these three machine learn-
ing models are provided in Table S6. The performances of the three
models on the training set and test set are summarized in Table 1. The
C4.5 decision tree model was the top performer of the three models.
The ACC values in the training and test set reached 95% and 92%,
respectively; the MCC values of this model in training and test set
were 86% and 83%, respectively; the AUC reached 95%. The C4.5
decision tree model used three descriptors for discriminating ip-
MeONPs and nip-MeONPs. The descriptors were electronegativity
(vme, metal atom electronegativity), cation charge, and concentration
(the MeONP exposure concentration in lg=mL); the descriptor
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Figure 2. Fold changes of IL-1b production (FCIL-1b) in metal oxide nanomaterials (MeONPs)-treated THP-1 cells. THP-1 cells were exposed to 0, 3.1, 6.2,
13, 25, 50, 100, and 200 lg=mL MeONPs for 24 h. IL-1b levels in supernatants were quantified by ELISA. FCIL-1b was calculated by Equation 3. The FCIL-1b
was expressed as the mean of three replicates and added in the heatmap.
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values are detailed in Table S7. Figure 4 shows the classification rules
of the C4.5 decision tree model. The root and interior nodes were
drawnwith splitting descriptors and the splitting criteria. If aMeONP
at a specific data point was predicted to be ip-MeONPs, the leaf node
was marked as “YES.” Otherwise, the leaf node was marked as
“NO.”The classification rules indicated thatMeONPswith lowervme
values (vme ≤ 1:55) tended to induce more inflammatory potential
than did those with higher vme values. As shown in Table S8, there
were no outliers in themodeling sets of the classificationmodel.

Continuous Model for Inflammatory Potential
To comparatively evaluate MeONP hazard ranking, we devel-
oped the continuous model to assess the inflammatory potential
of MeONPs. First, the FCIL-1b values of 30 MeONPs were
exploited to develop the PLS regression model. As shown in
Figure S3, four MeONPs that were largely distant from the ma-
jority (90%) of the data in the training set were identified as out-
liers based on r� and h values (r� >1:5 or hi >0:35) and
removed from the 30 MeONPs. Second, the remaining 26
MeONPs were randomly split into a training set (20 MeONPs)
and a test set (six MeONPs). A PLS model (Equation 10) were
built to rank the inflammatory potential of MeONPs, using only
three descriptors (vme – the electronegativity of metal atoms,
f-potential, and Dwater – hydrodynamic diameter). In the PLS
model, these three descriptors were combined to generate one
principle component that accounted for 85% of the total variance.

FCIL-1b =25:4− 20:6vme + 0:283f-potential + 0:0343Dwater,

ð10Þ

R2 = 0:892,Q2
CV =0:875, RMSECV =5:55

Q2
EXT = 0:800, RMSEP =7:39

The model was comprehensively validated according to the
Organization for Economic Cooperation and Development
QSAR validation principles (OECD 2004). The R2 of the 20
training MeONPs was 0.892, indicating an excellent goodness-
of-fit. The leave-group-out cross-validation on the 20 training
MeONPs yielded a cross-validated correlation coefficient (Q2

CV)
of 0.875 and a RMSE of cross-validation (RMSECV) of 5.5, indi-
cating a good robustness of the model. The R2

Y-scrambling (0.119)
and Q2

Y-scrambling (−0:0361) average values yielded from the 500
models based on Y-scrambling permutation were much lower
(Figure S4). This result confirmed that the model was not
obtained by chance. The externally validated correlation coeffi-
cient (Q2

EXT) and the RMSE of external prediction (RMSEP)
resulted from the predictions of the six MeONPs in test set. The
Q2

EXT and RMSEP values were 0.800 and 7.39, respectively, indi-
cating a good predictive ability of the developed PLS model.
Figure 5A and Table S9 display the plot of experimental FCIL-1b
values vs. the predicted FCIL-1b values using Equation 10. The
agreement between the observed and predicted values was satis-
factory for MeONPs from the training set (squares) and the test set
(triangles). As characterized by the Williams plot (Figure 5B), 25
MeONPs were located in the continuous model’s applicability do-
main with hi < h� =0:60 and −3<r� <3, whereas WO3 was out
of this region (hi =0:66> h�).

Experimental Evaluation of Model Predictive Ability
To further evaluate the predictive performance of the established
classification model, new MeONPs were selected for validation
based on following two criteria: a) they were not included by the
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Figure 3. Pulmonary inflammation of six selected metal oxide nanomaterials
(MeONPs) in mice. (A) Cytokine production (IL-1b and MCP-1) in BALF,
and (B) H&E staining of lung tissues after 40 h exposure to MeONPs.
C57Bl/6 mice (n=6) were exposed to La2O3, Gd2O3, Co3O4, ZnO, TiO2,
and WO3 at 2 mg=kg by oropharyngeal instillation. Quartz was used as posi-
tive control to treat animals (5 mg=kg). After 40 h, animals were sacrificed
to measure IL-1b and MCP-1 production in BALF by ELISA. The lung tis-
sues were fixed for H&E staining (three sections for each mouse). Normal dis-
tribution was confirmed by Kolmogorov-Smirnov test (significance>0:05).
*p<0:05 compared with vehicle control by two-tailed Student’s t-test.

Table 1. Performance of the C4.5 decision tree, logistic regression, and sup-
port vector machine models on the training set and test set.

Model Data set P/N n ACC SE SP AUC MCC

C4.5 Decision tree Training set 43/133 176 0.95 0.90 0.96 0.95 0.86
Test set 20/44 64 0.92 0.83 0.98 0.95 0.83

Logistic regression Training set 43/133 176 0.86 0.73 0.90 0.77 0.56
Test set 20/44 64 0.80 0.73 0.82 0.77 0.58

Support vector
machine
(Polynomial
kernel)

Training set 43/133 176 0.85 0.74 0.87 0.76 0.61
Test set 20/44 64 0.83 0.80 0.84 0.77 0.50

Note: Predictive accuracy was reflected by four indices: sensitivity (SE=TP=½TP+FN�),
specificity (SP=TN=½TN+FP�), overall predictive accuracy (ACC= ½TP+
TN�=½TP+FP+TN+FN�), and Matthews correlation coefficient MCC=ð

TP×TN−FP×FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP+FPÞðTP+FNÞðTN+FPÞðTN+FNÞ

p Þ. The area under the receiver operating characteristic

curve (AUC) is a measure of how well a model distinguishes positive and negative data
points; the >95%model AUC illustrated a high classification power. FN, false negatives;
FP, false positives; n, number of data points in the data set; P/N, ratio of positive/negative
data points; TN, true negatives; TP, true positives.

Environmental Health Perspectives 067010-6 128(6) June 2020



models in training or test sets; and b) the positive:negative ratio
in this validation set fell into the range of 1:3 (the ratio in training
set) to 1:2.2 (the ratio in test set). As a result of applying these
criteria, seven MeONPs (Ho2O3, Pr6O11, MoO3, Ta2O5, Nb2O5,
Mn3O4, and MoO2) were selected and exposed to THP-1 cells to
determine IL-1b production. The seven new MeONPs at eight se-
rial dilutions in this external data set generated 56 experimental
data points. The experimental data were compared with the pre-
dictions from the classification model (Table S10). The model
showed a high predictivity for this independent data set with
ACC at 0.86 and MCC at 0.74. The 56 data points were all
located in the model’s applicability domain (Table S11).

The validated classification model was applied to predict the
inflammatory potential of 29 MeONPs that lacked inflammatory
response experimental data. Among these MeONPs, six MeONPs
(CaO,SrO,BaO,Sc2O3,Tm2O3, andTb2O3) displayed inflammatory

potential at a very low concentration of 6:2 lg=mL, six MeONPs
(BeO, V2O3, CdO, Tl2O, Tl2O3, and Ga2O3) showed inflammatory
potential at concentrations >62:5 lg=mL, whereas other MeONPs
had no inflammatory effect (Table S12). The predicted results of 66
MeONPs were integrated into a color-coded periodic representa-
tion, which allowed us to check the safe exposure dose of a given
MeONP. Different colors represent the minimal doses eliciting
inflammation (MDEI) by MeONPs. As shown in Figure 6,
19 MeONPs displayed strong inflammatory potential with
MDEI≥12:5 lg=mL; 15 MeONPs had moderate inflammatory
potential with 12.5 <MDEI< 200 lg=mL; 32 MeONPs indexed
by blue color were relatively safe with MDEI≥200 lg=mL. All
these predicted MeONPs were located in the model’s applicabil-
ity domain (Table S13).

The external data set (seven new MeONPs) was also used to
verify the performance of the continuous model. As shown in
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Figure S5, most predictions by our models could be validated by
the experimental data. The model predictions correlated well
with the experimental results, as evidenced by the R2 and p val-
ues (R2 = 0:90, p<0:05). As shown in Table S14, all the new
MeONPs could be found in the continuous model’s applicability
domain except Ho2O3 (hi =0:97> h� =0:6).

Potential Mechanisms Involved in MeONP-Induced
Inflammation
The six MeONPs for animal experiment were selected to examine
potential cellular events involved in inflammatory effect. First, the
cellular uptake of theseMeONPswas examined by detection of the
concentrations of metal elements in particle-treated THP-1 cells.
As shown in Figure S6, the ip-MeONPs (La2O3 and Gd2O3)
showed higher cellular internalization at 64–69 lg per mg protein,
whereas the four nip-MeONPs nanoparticle showed relatively
lower levels (26–37 lg=mgprotein) of cellular uptake. We further
examined lysosomal damage by confocal imaging of cathepsin B
release from lysosomes by a Magic Red™ kit consisting of non-
fluorecent substrate, which is able to emit strong red fluorescence
after enzymatic cleavage by cathepsin B. We exploited this kit to
stain cathepsin B in particle-treated cells. As shown in Figure S7,
ZnO, Co3O4, TiO2 andWO3, showed red punctates of cathepsin B
confined in lysosomes, which is consistent with the distribution
pattern of cathepsin B in untreated cells. These images indicated
that ZnO, Co3O4, TiO2, andWO3 had limited effects on lysosomal
compartments. In contrast, La2O3 and Gd2O3 induced massive ca-
thepsin B release with diffused red color in cytoplasm, suggesting
severe lysosomal damage. Taken together, these results indicated
that cellular internalization and lysosome impairment may be
involved inMeONP-induced inflammatory response.

Because the QSAR analysis suggested that the vme value was
closely related to inflammatory effects, we speculated that the ip-
MeONPs with vme ≤ 1:55 may have a sufficiently strong interac-
tion with protons to trigger proton sponge effects and elicit lysoso-
mal damages. To test this feasibility, DFT computations were
performed to investigate the capabilities of six MeONPs to absorb
protons. Interestingly, we found the vme values of MeONPs had
impacts on proton adsorption capabilities. As shown in Figure 7,
Gd2O3, Y2O3, and Nd2O3 with vme ≥ 1:55 showed significantly
stronger proton adsorption than SnO2, CuO, and CoO vme >1:55
showed. This result was in agreement with our QSAR model pre-
dictions that MeONPs with lower vme values would tend to induce
more inflammatory potential than those with higher vme values.

Discussion

Selection of FCIL-1b in THP-1 Cells for Predicting
Inflammatory Potential of MeONPs
To explore the hazard effects of MeONPs, THP-1 cells (a
macrophage-like myeloid cell line) were exploited to examine
the impact of MeONPs on cell viability and inflammatory
responses. There are three reasons for the selection of this cell
line: a) phagocytic uptake is the main mechanism to remove in-
soluble fine particulates (Geiser 2010); b) the behavior of differ-
entiated THP-1 cells is more like that of monocyte-derived
macrophages (Auwerx 1991); c) a correlation of nanotoxic effects
between THP-1 cells and alveolar macrophages has been discov-
ered in our previous studies (Cai et al. 2018; Li et al. 2018).

THP-1 cells were exposed to a library of 30 MeONPs for
assessment of proinflammatory cytokine production, and 17
nanoparticles showed significant IL-1b production. Among them,
nine rare earth oxides elicited massive IL-1b release, which is
consistent with a previous report (Li et al. 2014b). This report
indicated that La2O3, Eu2O3, Sm2O3, Er2O3, Nd2O3, Dy2O3,
Y2O3, Gd2O3, and Yb2O3 were able to induce NLRP3 inflamma-
some activation and IL-1b production in THP-1 cells.
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FC values and p values are two ways to determine the inflam-
matory potential of MeONPs. Significance analysis by p values
may generate false-positive results for the MeONPs inducing lim-
ited IL-1b production with small standard deviations. Calculation
of the FC values directly reflects the cytokine levels increased by
MeONPs in comparison with control. However, FC values
depend largely on the number of replicates. In the cases of lim-
ited replicates with large standard deviations, a very large FC
value may not be significant. In this study, FC values of IL-1b
were more appropriate to determine the inflammatory potential of
MeONPs because the standard deviations of replicates in IL-1b
assay was small (Table S2).

Validation of Inflammatory Potential of MeONPs in Mouse
Lungs
To test the validity of the in vitro hazard ranking to toxicity out-
comes in animals, mice were exposed to MeONPs by oropharyn-
geal instillation. We deliberately selected female mice for lung
toxicity test because they are reported to be more sensitive than
male mice in pulmonary nanotoxicity studies (Zhang et al. 2015;
Ray and Holian 2019). We therefore randomly selected six
MeONPs for animal experiments, including Gd2O3, La2O3,
Co3O4, ZnO, TiO2, and WO3. Although animal studies on the six
selected MeONPs have been conducted in literature, there is no
comparative study of all six nanoparticles in one single animal
experiment (Li et al. 2014a; Larsen et al. 2016; Agarwal et al.
2019). Moreover, the physicochemical properties of MeONPs
with identical purported composition from different sources may
elicit different hazard effects in animals (Nel et al. 2006; Gajewicz
et al. 2012). Inconsistent material source as well as deviations
resulting from animal experiment batches may significantly affect
the validation of our in vitro predictions. Therefore, we systemati-
cally tested the in vivo inflammatory potentials of sixMeONPs and
leveraged our animal data rather than literature results to validate
the in vitro predictions.

It has been demonstrated that the pulmonary inflammation
induced by 2 mg=kg as-prepared multiwalled carbon nanotubes
(Ap-MWCNTs) is on the steep part of the dose–response curve of
pulmonary inflammation in C57Bl/6 mice (Wang et al. 2011).
Interestingly, the dispersed Ap-MWCNTs elicited dose-dependent
IL-1b production in THP-1 cells, which is similar to our findings
on 17 MeONPs. Moreover, the in vitro doses of Ap-MWCNTs at
12.5–100 lg=mL are close to the doses of MeONPs in our study.
We therefore compared the lung toxicity of MeONPs at 2 mg=kg.
Although we are not able to include real-life human exposures in
our study, a report by Cai et al. (2017) indicated that an in vivo dose
of 2 mg=kg is relevant to the levels of released fine particulates
duringwelding at thewelders’ breathing zone.

The inflammatory potentials of La2O3, Gd2O3, ZnO, WO3,
and TiO2 were well-validated in animal lungs. Co3O4 induced
slight inflammation in lung tissues although it showed low poten-
tial to induce IL-1b production in vitro. The inconsistent results
may be attributed to the capability of Co3O4 to elicit other
inflammatory cytokines, such as TNF-a (Figure S2). These
results indicate that although IL-1b is a prominent factor to pre-
dict the inflammatory potential of MeONPs, we cannot fully rule
out the contribution of other proinflammatory cytokines. More
cytokine indexes should be considered in future studies to
enhance the predictive accuracy of QSAR models for assessment
of nano-immunotoxicity.

Moreover, the inflammatory potential of some MeONPs were
validated by others’ lung toxicity studies. In a 24-h post-instillation
acute pulmonary toxicity experiment in female mice, La2O3,
Eu2O3, Sm2O3, Er2O3, Dy2O3, Y2O3, and Nd2O3 also induced
much higher inflammogenic potential than ZnO and NiO induced,

as evidenced by the increased number of granulocytes and IL-1b
(Han et al. 2018). Moreover, pulmonary inflammation by La2O3
was confirmed in rats that received longer-term-exposureMeONP.
Kim et al. (2017) found that La2O3 particles induced pulmonary
inflammation in rats after 0:5 mg=m3 inhalation exposure for 28 d
(5 d/wk). These findings were consistent with our experimental
results and suggested that IL-1b could be exploited as a predictive
index to rank the inflammatory potential ofMeONPs.

Reliability and Applicability of the QSARModels
Successful development of QSAR models depends on the quality
of biological data and reduction of uncertainty in modeling.
Despite the vast array of MeONP toxicity publications to date,
there are limited reliable data that can be used for hazard ranking
or QSAR modeling. Moreover, variations in the data published
by different laboratories hinder the development of reliable
QSAR models (Gajewicz et al. 2012). The MeONP data set
developed in this study was suitable for hazard ranking and
QSAR modeling. This suitability is because, to the best of our
knowledge to date, it was the largest data set and was obtained
entirely in the same laboratory, complete with a full experimental
protocol description and nanomaterial characterization (concen-
tration, f-potential, dissolution, size, etc.). We tried to reduce
uncertainty by building transparent models. The prediction rules
in both classification and continuous model were clear. The
descriptors used in the models were well-defined and can be
derived quickly from the chemical composition information (vme
and cation charge) and characterization of basic physicochemical
properties (f-potential and Dwater). Our results indicated that these
descriptors could encode the inflammatory potential of MeONPs
efficiently in comparison with classical quantum chemical
descriptors involving time-consuming computations and exten-
sive prior expertise. We also tried to reduce uncertainty in the
models by performing statistical assessments, assessing the
applicability domain, and conducting experimental validation.
Taken together, these steps suggest increased confidence in our
models.

Virtual Screening of MeONP Inflammatory Potential by
Classification Model
The high predictivity (ACC>90%, MCC>80%, AUC>95%) of
classification model allowed us to predict the MDEI for a set of
MeONPs for which the experimental data have not been available
(Figure 6). The virtual screening results were expected to provide
guidance for inflammatory potential evaluation: MeONPs with
a predicted MDEI< 50 lg=mL could potentially induce inflam-
mation above this concentration; MeONPs with predicted
MDEI< 12:5 lg=mL (BaO, SrO, Sc2O3, Tb2O3, and Tm2O3)
were predicted to have high inflammatory potential. Because all
these predicted MeONPs were located in the classification mod-
el’s applicability domain, we considered the predictions to be
reliable. It should be noted that the model may have limitations
for the prediction of MeONPs with exposure doses close to
MDEI. This limitation is probably because the variations of
FCIL-1b at doses close to MDEI may affect the statistical signifi-
cances between MeONP treated cells and control cells.

Continuous Model is Capable of MeONP Hazard Ranking
The number ofMeONPs used to build the continuous model, from a
QSAR viewpoint, was small but sufficient for construction of a pre-
dictive model. Classic QSAR studies have been performed and pub-
lished elsewhere using even smaller sets of nanoparticles (Puzyn
et al. 2011).Kubinyi (1993) had recommendedR2 ≥ 0:81 for in vitro
data and R2 ≥ 0:64 for in vivo data as cutoffs for picking a good
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model. Moreover, a criterion (<0:3) of differences between R2 and
Q2 was proposed for reliability assessment and applicability evalua-
tion of QSAR models (Eriksson et al. 2003). Taken together, fulfil-
ment of the above criteria (R2 = 0:892,Q2

CV =0:875,Q2
EXT = 0:800)

suggested that our continuous model can be applied to evaluate the
inflammatory potential of new, untested MeONPs. Due to the indi-
vidual differences between subject organisms/cells, it is unrealistic
to expect perfect repeatability and stability of toxicity data generated
across different batches of experiments. Therefore, perfect agree-
ment between quantitatively predicted values vs. experimental tox-
icity data cannot be anticipated (Gajewicz et al. 2015), and the
continuousmodel was built only to comparatively evaluateMeONP
hazard ranking. There were two clear outliers in the continuous
model, WO3 (Figure 5B) and Ho2O3 (Table S14), which belonged
to the test set and the external validation set, respectively. Ho2O3 was
considered an outlier because its hydrodynamic diameter (Dwater,
1145 nm) was much bigger than most MeONPs (202–800 nm) in the
training set.Dwater is a measure of sedimentation capacity of nanopar-
ticles. MeONPs with largeDwater tended to settle at the bottom of the
container during cell culture and consequently had high cellular inter-
nalization. In contrast, the Dwater of the outlier WO3 (112 nm) was
much smaller than that of most MeONPs in training set. As a result,
WO3 was more likely to remain suspended in culture media, which
considerably reduces cellular internalization. Therefore, the inflam-
matory potential ofHo2O3 was underestimated, and the inflammatory
potential of WO3 was slightly overestimated by the continuous
model.

Physicochemical Properties Responsible for Inflammatory
Effects of MeONPs
We present here a schematic representation of three hypothesized
mechanisms that collectively determine the inflammatory poten-
tial of MeONPs (Figure 8).

The classification model pinpointed vme and cation charge are
the most efficient factors for predicting inflammatory potential of
MeONPs in THP-1 cells. The first factor vme describes the tend-
ency of metal atoms to attract electrons. In other words, metal
atoms with lower vme are more favorable for donating electrons to
oxygen atoms. Oxygen atoms with more electrons tend to trap pos-
itively charged protons (H+). As a result, the adsorption of protons

was more likely to occur in MeONPs with lower vme than in those
with higher vme. According to the proton sponge effect (Nel et al.
2009), some nanoparticles could enter the acidifying lysosomal
compartment and sequester protons that are supplied by the
v-ATPase (proton pump). This process keeps the pump function-
ing and leads to the retention of one Cl– ion and onewatermolecule
per proton. Subsequently, lysosomal swelling and rupture cause
lysosomal content spillage, triggering excess IL-1b production and
inflammation. This mechanistic hypothesis was supported by our
experimental results and DFT calculation: MeONPs with
vme ≤ 1:55 exhibited stronger proton adsorption and more inflam-
matory potential than thosewith higher vme values.

The second important factor, cation charge, describes the
detachment of metal cations from the surface of metal oxides. It has
been demonstrated that the release of cations with a smaller charge
was more energetically favorable than the release of cations with a
larger charge (Kar et al. 2016; Puzyn et al. 2011). Obviously, much
more energy is required to detach four electrons than three (or two)
to form the appropriate cations (Kar et al. 2016; Puzyn et al. 2011).
Thus, it can be inferred thatmetal oxides having lower cation charge
value usually exhibit stronger reductive properties, and thus the ions
are easier to detach from the metal oxides, increasing toxicity. The
above mechanism explained the toxicity order of the studied
MeONPs (Me2+ >Me3+ >Me4+), which was consistent with our
experimental observations andmodel predictions.

In the continuous model, the descriptors vme and f-potential
were used to predict inflammatory potential of MeONPs in THP-1
cells. Our results demonstrated that inflammatory potential of
MeONPs depended on the cellular internalization and biocompati-
bility, which were highly dependent on the surface charge
(f-potential). Cho et al. (2009) found that gold nanoparticles with a
positive charge showed higher cellular internalization than nega-
tive nanoparticles showed. Moreover, the positively charged
MeONPsmay actively interact with the negatively charged lysoso-
mal membrane, leading to lysosomal destabilization (Nel et al.
2009). Rupture of the lysosomal membrane can trigger excess
IL-1b production and inflammation (Hornung et al. 2008). In con-
cordance with our results, the majority of previous work attributed
toxicity to positive f-potential (Cho et al. 2009; Pang et al. 2016;
Sendra et al. 2018). Experimental results provided strong support
to our QSAR analysis and mechanistic interpretation that cellular
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B Proton sponge effect

A Endocytosis
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v-ATPase

Chloride channel
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C Release of toxic ions
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ROS
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Figure 8. Proposed schematic image of inflammatory mechanisms by metal oxide nanomaterials (MeONPs). (A) Endocytosis: MeONPs with a positive
f-potential were most internalized by THP-1 cells and lysosomes. (B) Proton sponge effect. MeONPs with metal atom electronegativity ≤1:55 tend to trigger a
proton sponge effect, followed by lysosome damages, leakage of lysosomal contents and excess IL-1b production. (C) Release of toxic ions.
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internalization and lysosomal damage are the key events involved
in MeONP-induced inflammation. The ip-MeONPs (La2O3 and
Gd2O3) showed slightly higher cellular internalization than other
four nanoparticles (ZnO, Co3O4, TiO2 and WO3) showed (Figure
S6). Furthermore, confocal imaging of cathepsin B indicated that
La2O3 and Gd2O3 induced massive cathepsin B release (Figure
S7). The released cathepsin B was able to trigger the assemble of
NLRP3 inflammasomes (Li et al. 2013), whichwould further assist
thematuration of IL-1b by caspase-1 activation.

Previous studies (Kumari et al. 2012; Prabhu et al. 2010)
revealed thatMeONP toxicity is inversely proportional to size. It is
interesting to note that, in our investigation, the descriptors that
characterize a nanoparticle’s primary size were not selected by the
models. A probable explanation was the agglomeration of nano-
particles in cell culture media. Thus, the influence of primary size
onMeONP toxicity was insignificant. Moreover, nanoparticle tox-
icity likely depends on shape. For instance, recent studies suggest
that macrophages may struggle to incorporate relatively long
(>20 lm) and stiff nanoparticles into phagosomes (Nel et al.
2009). However, because theMeONPs used here were in spherical
or approximate spherical shape, such phenomenon was not consid-
ered in ourmodels. Except for size and shape,MeONPswith differ-
ent crystal structure and chemical modifications on their surface
should be considered in future nano-QSARmodel development.

Protein corona consisting of hard and soft layers is also found
to affect the biological effects of nanoparticles, including throm-
bocyte activation, hemolysis, cellular uptake, biodistribution, and
cytotoxicity (Cai and Chen 2018). Although the hard layer of co-
rona is long-lived and relatively stable as a monolayer of protein
molecules binding directly and tightly on particle surfaces, the
soft layer often undergoes dynamic changes as the particles inter-
act with different biological media and cellular compartments.
Due to the complexity and variability of corona in physiological
conditions, it is challenging to use corona structure as a descriptor
for QSAR analysis. In contrast, our study focused more on the
intrinsic properties of nanoparticles, such as hydrodynamic diam-
eter, f-potential, and electronegativity as descriptors for QSAR
analysis because evidence increasingly indicates that the corona
structures of nanoparticles are dictated by intrinsic physicochemi-
cal properties (Cai and Chen 2018), including hydrodynamic di-
ameter (Carril et al. 2017), f-potential (Wang et al. 2013),
hydrophobicity (Saha et al. 2014), etc.

Conclusion
A proinflammatory cytokine of IL-1b in THP-1 cells could be
used as an index to rank the inflammatory potential of MeONPs.
QSAR models were developed and validated for predicting the
inflammatory potential of MeONPs. vme, f-potential, and cation
charge were three key properties responsible for inflammatory
effects of MeONPs. DFT computations revealed that a proton
adsorption effect of MeONPs with vme ≤ 1:55 may be responsible
for lysosomal damages. We speculate that the QSAR models
could be used to predict the inflammatory potential of other
untested MeONPs.
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